
@@export_scripts@@

Ultimate Tech
Scaling Guide



@@export_scripts@@

About me I’m fractional CTO,
Software engineer and
hands-on engineering
manager. I was always
passioned about building
highly scalable, secure
and robust applications.



@@export_scripts@@

What this
guide will
cover

Why do you need to
scale?

–

What do you need
to scale?

–

Complete scaling
techniques list

–

Process of
designing any
system

–

Design few apps
together

–



@@export_scripts@@

Why scaling? Your business is growing, and
there are so many users on your
site that things are starting to
slow down. The amount of data your
business needs to store is
increasing, and servers cannot
handle the load.
During the holidays or other
events, the load on your
application or website can
increase more than ten times. If
your app has vulnerabilities or
weaknesses, many users will find
them.
For SaaS platforms, scaling
problems can lead to lower revenue
than expected. You may not be able
to onboard new clients quickly or
significantly expand your client
base.



@@export_scripts@@

Usually, a bad user experience causes
you to lose clients. Messages,
notifications, or emails are not
delivered to end users. Visitors must
repeat certain steps to complete the
business flow.
You start losing important data. User
invoices, consent forms, or
transactions can become legal issues.
Pages load slowly, network connections
time out, and your servers struggle
under heavy load.
You need to keep everything running and
ensure the user experience is fast and
smooth – speed and smoothness are
features.

Amazon found every 100ms of latency
cost them 1% in Sales!

“A one-second delay in page response
can result in a 7% reduction in
conversions."
along with
"47% of consumers expect a web page to
load in two seconds or less."



@@export_scripts@@

What do you need
to scale?



@@export_scripts@@

From the top overview it’s always
about CPU, Memory or I/O because all
apps or services live on hardware. In
the cloud or your server room.
But to understand where losses or
slowdowns happen you have to know
what is going on in your system
starting from user input in the
browser or application till the
database query and back as detailed
as possible.
You tweaked all possible components
in your code and server settings but
it's still not enough. Let's talk
about possible techniques which will
allow you to scale your app even
more.
Further on we will talk concepts,
no technology specifics, no
tooling, pure fundamental concepts
which can be implemented in any
system.



@@export_scripts@@

Scaling
directions

Application
Auxiliary
Data



@@export_scripts@@

The cube of scalability is our Holy
Grail. It nicely and simply describes
how to achieve “nirvana” - infinite
scaling. But it covers mostly
application level. Based on that I
split all techniques in 3 parts.
Application level, Auxiliary level
and Data level.
Application level - holds your entire
business logic, usually it’s ruby or
php scripts which are running on your
server.
Auxiliary level - kind of helper in
scaling world. It’s not tied to your
business logic or data.
Data level - usually holds the state
of your program/application which
might be database or other kind of
storage.
Let’s go through a complete list of
techniques which covers all aspects
of scaling cube and even more. 

➡

adapted from the art of scalability by martin l. abbott & michael t. fisher



@@export_scripts@@

Vertical scaling



@@export_scripts@@

Vertical scaling - commonly
used and the most simple
technique. Just add more
power to your machines.
Database ran out of disk
space? - Add more
gigabytes.
Server with application
became slow? - Upgrade from
medium to large instances.
Implications of this
technique are temporary.
But it easily allows you to
win some time to implement
more fundamental solutions.



@@export_scripts@@

Horizontal scaling



@@export_scripts@@

Horizontal scaling means to run your logic on
multiple machines with load balancer on top of
that. It will allow you to gain extra power.
Let’s say your app started dropping some requests
or just simply became slow. And upgrading to a
bigger instance is quite pricey or your app
already on the biggest instance.
You can run your app on multiple machines during
rush hours. It will allow you to load balance
between them and solve issues with slow requests.
As extra plus it will make your system more fault
tolerant. One instance died? - Not a problem, you
have one more instance which will take the load.
And your team will have time to understand why it
happened and fix it.
This technique has few requirements to your
backend application:
Your app should be stateless, user requests should
be executed the same way on server “a” and server
“b”.
Try to eliminate shared components between
multiple servers. Otherwise it will add a common
point of failure and possible bottleneck in the
future. Bottleneck is a component which slows the
whole system down. But do we really need to
process everything in real time?



@@export_scripts@@

Postponed
execution



@@export_scripts@@

Postponed execution - is a
really nice and elegant
technique with entry level.
As I mentioned before, you
don't need to do everything
in real time. You can create
a task and execute it later.
Send an invoice - can be done
in a few minutes after
clicking the payment button.
When your post should be
visible on instagram? -
Immediately, don't think so.
This technique will allow you
to offload non critical
functionality to be able
process requests faster.



@@export_scripts@@

Asynchronous
processing



@@export_scripts@@

Similar to postponed execution
but done in parallel. Same task
split across several machines.
Send 5mln notifications or send
millions of emails, just split
the task and send it to
multiple machines.
This technique requires some
modification to your
infrastructure and you will
have to be very careful few
failures. From my experience
even a simple task might have
invisible bugs which might
collapse something. Once I sent
8 emails instead of 1 to a few
users because of a uid
collision.



@@export_scripts@@

Functional
separation



@@export_scripts@@

Functional separation involves
isolating different
functionalities onto separate
machines, allowing each to be
optimised independently. This
technique enhances
maintainability, performance, and
fault tolerance. It also supports
concurrent development by enabling
teams to work on different parts
of the system simultaneously.

Authentication Service: Manages
user login and registration.

1.

Content Management Service:
Handles content creation and
storage.

2.

Recommendation Service:
Provides personalised user
recommendations.

3.



@@export_scripts@@

Service-oriented
architecture



@@export_scripts@@

This is one of the most powerful
architectures. The entry level is a
bit higher than previous options, but
it offers a lot of flexibility in
development, deployment, and testing.
The idea is simple: imagine you have
a website that serves articles,
allows users to follow others, has
authentication, and includes a
commenting system. You can split all
of these into separate services. Your
system will become more fault-
tolerant. For example, if the weather
service on a website like Yahoo goes
down, everything else will remain
fully functional.
However, if your team lacks
experience with SOA, it's better to
seek advice from a company. Also,
talk with product managers and other
stakeholders to clearly define the
business value and strategic goals of
each service.



@@export_scripts@@

Adds communication overhead–
Split logic and data–
Concurrent deploys and
development

–

Making system more fault
tolerant

–

Individual scaling of components–



@@export_scripts@@

Parallel execution



@@export_scripts@@

This is rocket science. This
technique is similar to
asynchronous queue but done in
real time by splitting request and
processing it on several machines.
I know not more than 2-3 companies
that use it in the business logic
layer. Google one of them, when
you hit the search page your
request goes to dozens or even
hundreds of servers. Your request
is split, servers processing it,
after that collect all results and
return back to the user in real
time!
If anyone used map reduce you
probably know what I was talking
about. If you know how to bake
this do it, if not think about
other options.



@@export_scripts@@

Scaling directions
Application
Auxiliary
Data



@@export_scripts@@

Fat client



@@export_scripts@@

So we covered possible ways to scale your application level,
let’s talk about your clients. Fat client - simply means to
move as much as possible to the client side.
Instead of server side rendering, move everything to the
client. Send lightweight json or graphql query and render
views using its data. Your client can go to each service
asynchronously to provide better user experience. But this
trend to be reversed at the moment and static content seems
to rise.
Fat client can be a great save of your resources. Let me
explain why: c5.large Amazon instance vs IPhone X. Amazon
c5.large - 2 cores 4gb of ram, iPhone - 6 cores 4gb of ram.
Yes, different process architecture, but as powerful.
You can even move the load balancer to the client side, as I
know twitter X is doing it.



@@export_scripts@@

Caching



@@export_scripts@@

Everyone knows about caching. I
will just add a few words about
it.
From what I saw in some companies,
cache is slowing their system
down. Let's imagine that to go to
cache is 50ms and to go to
database is 200ms. You benefited 5
times. But what if your app hit
cache less than in 50%? Your
system becomes slower, instead of
50 or 200ms it spends 250, plus
storing useless results in memory.
Always calculate the hit rate. And
your system should work without
cache, if it is not able to start
without cache something is wrong
in architecture.
We already covered application
level, auxiliary level



@@export_scripts@@

Scaling directions

Moving to the most interesting
one

Application
Auxiliary
Data



@@export_scripts@@

Sharding



@@export_scripts@@

Sharding - in a way
horizontal scaling of the
database.
Let’s say we have a database
where we store subscribers to
our newsletters. 10 million
subscribers, plus their
profiles, preferences etc. It
can't fit in one database.
Let's shard it by primary id
or some hash. Move 5mln to
one database and 5to another.
But from time to time you
will have to do manual
migration and likely freeze
your system for some time. To
be more prepared you can have
a look on virtual sharding.



@@export_scripts@@

Sharding :: Virtual
sharding



@@export_scripts@@

The idea of this technique is to prepare your system for high load. As we talked at the beginning even lost
consent might be a critical issue for the business.
Let’s say we are building a social network, messenger or dating app. You know that at the beginning you will have
10.000 people. After the first marketing campaign you expect 150.000 and so on. To be prepared for such a load of
data, just shard your database up front and create 500 databases in one physical database. Once one is full, move
it to the physical server.



@@export_scripts@@

Sharding :: Central
dispatcher



@@export_scripts@@

This pattern allows you to
control your shards. In a way
it works as a proxy between
your app and databases.
For example, on one of your
shards you spotted 1mln bots
or scam accounts and
truncated them. After that
you can say to the central
dispatcher to load new users
there.
Central dispatcher adds quite
some complexity and coupling
to one component, but if you
have a specific need - why
not.



@@export_scripts@@

Replication



@@export_scripts@@

We’ve talked about heavy write
and storing data, but usually
web projects have much more
read queries than write. The
well known approach -
replication.
There are a lot of cases, let’s
take the simple one. You
publish an article, store it in
a database. And how many users
will request it? Thousand, 10
or million.
A lot of databases have native
instruments which you can use.
Principe is next: you have the
main database (master) and
slaves (replications). Write
queries go to master and read
to slaves.



@@export_scripts@@

Partitioning



@@export_scripts@@

Functional or logic
separation of your data.
Or as some people from
micro services world
call it "Polyglot
Persistence".
Articles are stored in
database 1 and comments
are stored in database
2. And as well this
pattern allows you to
choose best fitted
technology for each use
case.



@@export_scripts@@

Denormalisation



@@export_scripts@@

This technique is heavily used in
our system. It does not require
introducing any new tools or
services. Denormalisation of
database is a normal process in any
web project.
You are reading 10 times more than
writing, optimise your data to read
it much more easily and efficiently.



@@export_scripts@@

Redundancy



@@export_scripts@@

Redundancy is similar to the denormalisation process except you do not change the form of data.
Let’s say you have the latest articles which always have a high volume of views - store them in a
separate table with 10 rows. Another lates article came out - store it in your main storage and
update your new small table for further better performance.



@@export_scripts@@

Scaling directions
Application
Auxiliary
Data



@@export_scripts@@

How to design?



@@export_scripts@@

BUSINESS LOGIC
We describe the business logic of the future system, including
potential ways of developing the system. Outlining key features
and functionalities.

1.

THE NUMBERS
We calculate the volume of data stored and the speed of their
increment. Choosing a critical path - storing, writing or
reading data?

2.

DEGRADATION
Determine the acceptable degree of degradation of the system.

3.

DATA
We will construct the data movement scheme and make a decision
which of the features of the designed system we will use.

4.

SCHEME
We are designing a data storage scheme.

5.



@@export_scripts@@

Let's design some
apps



@@export_scripts@@

Job
applications



@@export_scripts@@

Requirements

Business logic1.
Read fresh vacancies–
Read vacancies from archive–
Recruiters can publish and update
vacancies

–

Numbers2.
Each vacancy ~15-30 kb–
Store all vacancies from the 2000–
Each day 5k vacancies ~2mln per year
(~40gb), 20 mln per 10 years,
(~400gb)

–

Degradation degree3.
No–

Data4.
Reads much more often than writes–
A lot of views goes to latest
vacancies

–

Majority views goes to vacancies
from last week

–

Design

Sharding?1.
Data not equal–
No–

Redundancy2.
Write to two databases (hot and
cold)

–

Cache hot database3.
Partitioning in archive database4.
By date (example)–



@@export_scripts@@

Dating app



@@export_scripts@@

Requirements

Business logic1.
Fill profile (profiles have
common structure)

–

Email and password for login–
Users can see profiles of others–

Numbers2.
150-250 mln users–
Each profile 10kb (2.000gb)–
5 billion hits per day–

Degradation degree3.
No–

Data4.
Reads much more often than
writes

–

Equal size of profiles–
Each profile has unique id–
No leaders–

Design

Caching?1.
No leaders - caching will be
useless

–

No–
Replication?2.
5 billion hits - 24 * 60 * 60
~140k reads per second

–

Sharding?3.
Sharding.–
Which key?–
We have unique id in data
requirements

–

But in functional requirements
we have email and pass login.

–

First two email characters.–
Central dispatcher (if needed)–



@@export_scripts@@

Friend feed
(aka X)



@@export_scripts@@

Requirements

Business logic:1.
Unlimited amount of friends or follows–
Infinite feed (store all entities)–

Numbers2.
On average 100 friends–
3 posts per day–
1 post ~1kb–
100 mln users per day, each user
produces 100 hits, 1 bln requests per
day

–

30mln posts per day, 10bln rows per year–
Degradation degree3.
Post might be shown with delay–
Order might be not exact as by timeline–

Data4.
99% goes to fresh posts5.
Users with million friends or followers6.

Design

How to store posts?–
Sharding–
Starting with virtual sharding–

Storing just ids–
Users with big amount of followers–
queue, postponed execution–

Fetching actual posts?–
Fat client–
Caching–



@@export_scripts@@

Thank
you for
reading
– Let's connect
– mrpopov.com
– x.com

https://www.linkedin.com/in/mrpopov/
https://mrpopov.com/
https://x.com/mrpopov_com

